skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ghentiyala, Surendra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We expand on recent exciting work of Debris-Alazard, Ducas, and van Woerden [Transactions on Information Theory, 2022], which introduced the notion of basis reduction for codes, in analogy with the extremely successful paradigm of basis reduction for lattices. We generalize DDvW's LLL algorithm and size-reduction algorithm from codes over F_2 to codes over F_q, and we further develop the theory of proper bases. We then show how to instantiate for codes the BKZ and slide-reduction algorithms, which are the two most important generalizations of the LLL algorithm for lattices. Perhaps most importantly, we show a new and very efficient basis-reduction algorithm for codes, called full backward reduction. This algorithm is quite specific to codes and seems to have no analogue in the lattice setting. We prove that this algorithm finds vectors as short as LLL does in the worst case (i.e., within the Griesmer bound) and does so in less time. We also provide both heuristic and empirical evidence that it outperforms LLL in practice, and we give a variant of the algorithm that provably outperforms LLL (in some sense) for random codes. Finally, we explore the promise and limitations of basis reduction for codes. In particular, we show upper and lower bounds on how ``good'' of a basis a code can have, and we show two additional illustrative algorithms that demonstrate some of the promise and the limitations of basis reduction for codes. 
    more » « less
  2. Information leaks are a significant problem in modern software systems. In recent years, information theoretic concepts, such as Shannon entropy, have been applied to quantifying information leaks in programs. One recent approach is to use symbolic execution together with model counting constraints solvers in order to quantify information leakage. There are at least two reasons for unsoundness in quantifying information leakage using this approach: 1) Symbolic execution may not be able to explore all execution paths, 2) Model counting constraints solvers may not be able to provide an exact count. We present a sound symbolic quantitative information flow analysis that bounds the information leakage both for the cases where the program behavior is not fully explored and the model counting constraint solver is unable to provide a precise model count but provides an upper and a lower bound. We implemented our approach as an extension to KLEE for computing sound bounds for information leakage in C programs. 
    more » « less